
Subproblem Finder and Instance Checker,
Two Cooperating Modules for Theorem Provers

DENNIS DE CHAMPEAUX

University of Amsterdam, The Netherlands

Abstract. Properties are proved about INSTANCE, a theorem prover module that recognizes that a
formula is a special case and/or an alphabetic variant of another formula, and about INSURER, another
theorem prover module that decomposes a problem, represented by a formula, into independent
subproblems, using a conjunction. The main result of INSTANCE is soundness; the main result of
INSURER is a maximum decomposition into subproblems (with some provisos). Experimental results
show that a connection graph theorem prover extended with these modules is more effective than the
resolution-based connection graph theorem prover alone.

Categories and Subject Descriptors: 1.2.3 [Artificial Intelligence]: Deduction and Theorem Proving-
deduction

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Alphabetic variant recognition, meta properties, problem decom-
position, special case recognition

1. Introduction
Deduction, although a proper subset of problem solving, includes a vast range of
activities. This spectrum extends from confirming routine conjectures-for
instance, type checking in low-level natural language processing-to proving
theorems in mathematics.

It is improbable that one and the same vehicle could control the whole deductive
area. The trade-off between generality and specialization may be employed to use
different data structures or languages for different tasks. For instance, deduction
for routine conjecture verification may be reformulated as pointer chasing in a tree
hierarchy (under certain circumstances). At another extreme, deduction in a
mathematical context may be seen as “obtaining the right point of view” or “getting
the right kind of formalization,” which hides irrelevancies until, at the tight
moment, sufficient similarity with previously solved theorems has been attained.

Reformulating, in the latter case, will not, in general, be enough to solve a new
problem. An operator that applies in a formerly established proof cannot be applied
immediately to the problem at hand; additional cases must be considered, and so
forth. These gaps may lead to the generation of new conjectures, to be handled in
the same high-level spirit; else, unavoidably, it may be necessary to rely on brute
force search.

Author’s present address: 145 19 Bercaw Lane, San Jose, CA 95 124.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1986 ACM 0004-541 l/86/1000-0633 $00.75

Journal of the Association for Computing Machinery, Vol. 33, No. 4. October 1986, pp. 633-657.

634 DENNIS DE CHAMPEAUX

Classical theorem proving, like resolution and natural deduction, is, in our
opinion, an excellent tool to be invoked when high-level reasoning cannot be
applied any longer and it becomes necessary to rely on blind search, although it
should be used as cleverly as possible to prevent, for example, two commuting
resolution operations. However, it is our opinion, as well, that application of these
techniques should be postponed at all costs. The problem is that despite great
progress in resolution and natural deduction, it remains virtually impossible to
make these search techniques “aware” of nonsyntactical features.

These techniques can be criticized for not being sensitive to “obvious” peculiar-
ities of problems to be solved. They do not “know” the difference between an
axiom, a theorem, a definition, or a recursive definition. They are not flexible
about deciding whether to try proving a subgoal or to try finding a counter-
example instead. They cannot juggle several interpretations of a set of formulas in
order to guide decisions. They cannot recognize that a proof, in fact, allows the
assertion of a stronger conclusion than the conjecture started off with. (When an
assumption is introduced and it can be recognized that the subsequent proof does
not depend on it, one can prevent repeating the proof under the negated assump-
tion.) They are ignorant of other theories and thus cannot attempt to adapt proofs
by analogical reasoning (with the notable exception of a first attempt in [9]).

In summary, the tool box of deduction rules is supposed to do too much work,
and its tools are clumsy, while useful data-models, other theories, distinctions
between formulas or, even the proof sequence of already proven theorems-are
inaccessible.

Consequently, we envision a different “architecture” for more powerful theorem
provers. They should be arranged as cooperating deductive specialists, each one
embodying sound deductive power and, when productive-in the sense of a
production system-able to ensure a positive contribution to a solution. No single
one needs to be complete. When, for example, a resolution specialist belongs to
the community, completeness for the community is ensured.

Of course another problem, well known in production systems circles, arises
when there are many deductive specialists available: How does one decide cheaply
which specialist is applicable and, when at least two are applicable, which should
be given control? When we become accustomed to supplying more information
than just axioms and a conjecture to a community of deductive specialists, as
argued above, this problem might be alleviated in a non-ad-hoc way.

We describe in this paper two deductive specialists:

(1) INSTANCE. INSTANCE is able to decide whether a conjecture, represented
by a formula, is a special case, an alphabetic variant, and/or an and/or-connective
permutation variant of an already accepted axiom, theorem, lemma, intermediate
result, and so forth.

(2) INSURER. INSURER is able to recognize when a conjecture, represented
by a formula, can be rewritten into independent, easier-to-handle subproblems,
using a conjunction.

These specialists-which, alternatively, can be seen as preprocessors for a con-
ventional theorem prover-together with an unsophisticated applier of definitions,
have been implemented and integrated with a connection graph resolution-based
theorem prover. The augmented power of this deduction complex with respect to
the sole theorem prover is shown by examples.

Subproblem Finder and Instance Checker 635

Some of this work has been reported in [2]. Meanwhile, the cooperation between
the two preprocessors could be increased, making one of them still more effective
and maintaining their algorithmic, always halting nature. The cooperation has
become so close that we have the following apparent paradox: Although the output
format of INSURER is the input format of INSTANCE, INSTANCE has processing
responsibilities deep down inside INSURER.

Section 2 is devoted to a tutorial example showing how INSTANCE and
INSURER take care of obvious features (without which our regular resolution
theorem prover flounders). The quick reader can safely skip to the end after this
section. The next section is devoted to the definition of INSTANCE and a
description of some of its properties. In Section 4, INSURER is defined and its
properties are explored. Section 5 describes the structure of the supervisor of the
theorem prover COGITO. This supervisor contains INSTANCE, INSURER, a
definition opener, and a connection graph resolution component, which handle
the examples to be discussed in Section 6. Related work is compared in Section 7.

.

2. A Tutorial Example

Our theorem prover consists of several relatively independent modules. In addition
to INSTANCE and INSURER, there are a simple-minded applier of definitions, a
translator from Predicate Calculus (PC) to conjunctive normal form (CNF), a
connection graph resolution component, and an unsophisticated supervisor.

The following example from elementary set theory looks trivial, but a straight-
forward treatment by our resolution component, after translation into CNF, has
not yet found a contradiction after generating 35 clauses. It consists only of the
following:

Definition

(s)(t)(SETEQ(s, t) f* (x) (IN-SET@, s) c, IN-SET(x, t))).

Conjecture

(u)(u)(SETEQ(u, u) c-, SETEQ(u, u)).

The subproblem finder INSURER immediately recognizes that the conjecture
reduces to

(u)(u){-SETEQ(u, u) V SETEQ(u, u)) A
(u)(u)(SETEQ(u, u) V -SETEQ(u, u)).

The alphabetic variant/variable(s) instantiation checker INSTANCE will recog-
nize that the second subproblem is an alphabetic variant of the first subproblem.
Thus the deduction complex has only to deal with the first one. The module
specializing in “opening” defined predicates will recognize that the complex can be
applied and will rewrite the first subproblem into

(u)(u){-(x)(IN-SET(x, u) ++ IN-SET(x, u)) V
(x)(IN-SET(x, u) c, IN-SET(x, u))).

Again INSURER will be invoked for this formula. To appreciate its result, we
focus more closely on its actions. First c, is removed and - is moved inward,

636

resulting in

DENNIS DE CHAMPEAUX

(u)(u)[‘.‘((E x)(IN-SET(x, u) A -IN-SET(x, u))
(E x){-IN-SET(x, u) A IN-SET(x, u))

(I\(x){-IN-SET(x, u) V IN-SET(x, u))
(x)(IN-SET(x, u) V -IN-SET(x, u)))].

The structure of this formula is

wJw a

2 Al A2)].

Since the body of the quantifiers is a disjunction, the universal quantifiers cannot
be distributed. The third argument of the disjunction is a conjunction, however,
allowing the production of a conjunction as the body of the quantifiers. This
produces

(u)W[A w Al 01 021

b’ A2 01 0211.

Before pushing the quantifiers to the right, the disjunctions are scrutinized,
since simplifications may be possible after the distribution. The first disjunction,
(v A1 0, 04, is in fact

[v (x){-IN-SET(x, u) V IN-SET(x, u))
(E x)(IN-SET(x, u) A -IN-SET(x, u))
(E x)(-IN-SET(x, u) A IN-SET(x, u))].

INSTANCE will observe that the negation of the first argument -A,, after
working the negation inwards producing

(E x)(IN-SET(x, u) A -IN-SET(x, u)),

is the same formula as the third argument 02. Thus, this disjunction can be
collapsed to TRUE. This result of INSTANCE does not depend on the variable x
being used in A, as well as in 02. INSTANCE would have also reported success
when O2 was, for example,

(E y){-IN-SET(y, u) A IN-SET(y, u)).

The second disjunction, (V A:! 0, 02), collapses in a similar way. Thus, the
whole formula rewrites into TRUE, and we are finished. Notice that the resolution
component was not called upon.

3. Compressed MiniScope and INSTANCE
As discussed in the former section, distinct deductive specialists may require distinct
data representations for the objects on which they operate. Here we describe
another data representation, compressed miniscope (CMS), which allows the
support of operations such as “for symmetry reasons it is sufficient to consider
only . . .” and “since A is a special case/alphabetic variant of B we conclude
that”

We support these operations on PC formulas, but we first illustrate what is at
stake with the propositional calculus. Let us start with a propositional calculus
formula PO (and to motivate the operations we assume that it is a conjecture).
Using a well-known formula, we can transform PO into an equivalent formula P1

Subproblem Finder and Instance Checker 637

such that Pi is in CNF, say

PI = ARi, with Ri = V(Ro).

(To simplify the notation, we frequently use ARi as an abbreviation for
A(&,..., R,): A stands for “and”; V(R,) abbreviates V(Ril , . . . , Rim).)

P, may be simplified with the following rules:

(1) If Rix = Riy (with x # y), then drop Riy from Ri (whenever only one element of
the disjunction remains, drop the or connective).

(2) If Rix = - Riy, then drop Ri from PI.
(3) If each element Ri,y in Ri has a corresponding element Rjy in Rj with Rix = Rjy,

then drop Rj from PI.
(4) If - Ri = Rj, then P2 := FALSE.
(5) If no Ri remains, then Pz := TRUE.
(6) If only one Ri remains, then drop the A connective.

Whenever the resulting formula PZ is a conjunction while PO is not, then we have
decomposed the problem PO into subproblems that are, in general, easier to solve
than PO. Rule 1 simplifies subproblems. Rule 2 removes tautologies. Rule 3 removes
a copy of a subproblem. (The generalization of Rule 3 to the PC will remove, for
instance, subproblems that are introduced by inherent symmetries.) Rule 4 is a
watchdog against nonsensical problems. Rule 5 makes these rules a special-case
theorem prover.

The generalization of this transformer to PC input is the topic of the next section.
(The translator INSURER applies the rules while transforming to CMS, the analog
of CNF, instead of applying those rules afterward.) Rules l-4 presuppose a test to
check whether propositional constants are related in such a way that a rule may
“fire.” For example, Rule 1 requires only a test for the identity of Rix and Riy. The
generalization of these tests to the PC is the topic of this section and amounts to
the INSTANCE algorithm. INSTANCE thus plays the same role as a subsumption
algorithm. However, whereas a subsumption algorithm works only with clauses as
input, INSTANCE works on PC formulas.

A CMS formula is a closed miniscope PC formula (see [14]), with the additional
properties that

(a) no two arguments of an “and” or “or” subformula are in an INSTANCE
relationship,

(b) no two arguments of such a subformula are in a half-negated INSTANCE
relationship (the two formulas F and G are in a half-negated INSTANCE
relation when the negation of F, with “not” moved inward, is in an INSTANCE
relationship with G), and

(c) each quantifier has a unique variable.

Apart from the necessity of being more precise about miniscope, we have to face
the complication that the INSTANCE relationship is mentioned in the definition
of CMS, while the INSTANCE algorithm definition presupposes that its two
arguments will come from the CMS domain. Recursion will be the way of solving
this dilemma.

We remind the reader that a formula is in miniscope when

(a) the only logical symbols are -, A, and V, and - can occur only in front of
atomic formulas;

638 DENNIS DE CHAMPEAUX

(b) an argument of a conjunction (disjunction) is not a conjunction (disjunction);
(c) the body of a universal (existential) quantified formula is not a conjunction

(disjunction);
(d) if the body of a quantified formula is a conjunction (disjunction), then each

argument of the conjunction (disjunction) should contain the quantifier
variable;

(e) no permutation of a sequence of universal (existential) quantifiers invalidates
the former rule.

We still have to reline this miniscope format to CMS. Let the AND/OR level of
a formula be the maximum number of AND/OR connectives one may encounter
by going from the top level to a literal terminal. Suppose CMS has been defined
up to level n - 1 and INSTANCE has already been defined on this CMS subset.
An n-AND/OR level miniscope formula is in CMS iff no arguments of its nth-
level AND/OR connective are in the INSTANCE or half-negated INSTANCE
relationship (which is defined, since those are, at most, of level n - 1).

Before continuing with the definition of INSTANCE, we present examples to
clarify the direction in which we are going.

Example 1. (x)(A(a) A A(x)) is not miniscope.

Example 2. A(a) A (x)4(x) is not CMS because A(u) is in the INSTANCE
relationship with (X&~(X).

Example 3. -A(u) A (x)4(x) is not CMS because -A(u) is in the half-negated
INSTANCE relationship with (x),4(x).

Example 4. (x)A(x) is in CMS.

Remark. Example 2 may be rewritten to (x&4(x) and Example 3 rewrites to
FALSE.

We proceed with the specification of INSTANCE. Its input consists of a pair
(r, K) of CMS formulas, where we may think of T as a conjecture to be tested for
being a special case and/or alphabetic variant of K.

The output of INSTANCE is Y or nil depending on whether or not T is an
“instance” of K. An “instance” is, in fact, defined in the following in a procedural
way by an algorithm whose main characteristic is that it is stronger than “impli-
cation.” After its specification we show that INSTANCE(T, K) implies l- K + T.

The first action of INSTANCE is to Skolemize K and to “antiSkolemize” T,
thus, existential quantifiers in K and universal quantifiers in T are removed by
replacing the associated variables with fresh functions, while universal quantifiers
in K and existential quantifiers in T remain. Those functions have variables that
depend on the preceding universal and existential quantifiers, respectively.

Example. Consider the formula 2: (x)(E v)p(x, v). When 2 is the second
argument K of INSTANCE, the Skolemization of Z yields (x)p(x, F(x)), with F as
a fresh unary Skolem function. When Z is the first argument T of INSTANCE,
then anti-Skolemization of Z yields (E y)P(f; v) wherefis a Skolem constant since
there is no existential quantifier preceding (x).

LEMMA 1. If S,(K) is the result of the Skolemizution of K, and S,(T) the result
of the anti-Skolemizution of T, then k S,(K) + SZ(T) implies k K t T.

Subproblem Finder and Instance Checker

PROOF. What is given, l- S,(K) --, &(T), is equivalent to

(1) k S,(K) + -m-n,

639

because of the nature of Skolemization and anti-Skolemization. Obviously, (1) is
equivalent to

(2) t- -AsI v -w-n,

which again is equivalent to

(3) ~-IS,(K) A Sd-0).

Since S, distributes over conjunctions, we see that (3) is equivalent to

(4) I- -S,(K A -T).

The soundness theorem allows us to infer that (4) is equivalent to

(5) S,(K A -7’) is unsatisfiable.

When SN(F) denotes a Skolem-normal form of a first-order formula F, then (5) is
equivalent to

(6) SN(K A -7’) is unsatisfiable.

For example, when F is the formula (x)(E y)(z)G(x, y, z), then S,(F) =
(x)(z)G(x, s(x), z), with s being a fresh Skolem function, and SN(F) =
(E S)(x)(z)G(x, S(x), z), with S as a second-order-function variable. A model that
would satisfy S,(F) would provide an interpretation for the function s that could
be used for the interpretation of the function S. A similar argument applies for a
model that would satisfy SN(F) because the function s is not constrained by the
surrounding formula.

Applying, for instance, lemma 42a of [4], we obtain that (6) implies

(7) K A -T is unsatisfiable.

Remark. Invoking the axiom of choice gives us: (7) implies (6). However we
do not need the opposite implication.

Applying the completeness theorem finally gives us

(8) l-K+ T. El

The next action of INSTANCE, after anti-Skolemizing and Skolemizing its two
arguments, is to call a recursive support function, INS2, with

INW 5% 77, SdK), nil),

where the third argument stands for the set of free variables in S(T) and S(K).
Since we start off with closed formulas, this set will be empty at the top-level
invocation of INS2. The function INS2 will descend into subformulas of its first
two arguments and, when quantifiers are encountered, will increment the variable
set for recursive calls. When INS2 encounters atomic formulas, it will apply the
unification algorithm after taking accumulated variables into account.

The output of INS2 is either

-NO, signifying that S2(T) is not an instance with respect to the INS2 procedure
of S,(K) and will cause INSTANCE to return with nil, or

-a nonempty set of substitutions (a), where each substitution u allows the
inference k S,(K) + S,(7) and will cause INSTANCE to return with Y.

640 DENNIS DE CHAMPEAUX

At the top-level call of INS2, it is sufficient that INS2 returns with only one
substitution to have INSTANCE reporting success. The following example shows
that the power of INSTANCE increases when INS2 returns possible multiple
substitutions.

We would certainly like it to be recognized that

s2m = (E 4(&P, d A B(z))

is an instance of

wa = c4.&f(x)) A w4Y9 g(Y)) A w?(P)).
The function INS2 will produce two (dependent) subtasks. The first one is a

recursive call with arguments A(p, z) and S,(K) (with variable z). The second call
is on [B(z)] and s,(K), where [B(z)] indicates the constraining substitution involv-
ing z, generated by the first call. The first subtasks can produce two satisfying
substitutions: ((x c p, z +f(p)), (y c p, z c g(p))). If INS2 were to produce only
the first (x, z) substitution, then the other subtask concerning [B(z)] would fail.

We proceed by defining the support function INS2. The arguments ST, SK, and
VAR initially receive the values S*(T), S,(K), and nil, respectively. We need the
following notation:

(a) X.7 stands for performing the substitution T on X. (A substitution is of the
form ((XI + s,), . . . , (x,, t sn)) with xi not in Sj and all xi different; nil is the
empty substitution).

(b) T + u stands for the concatenation of the substitutions 7 and 6.7 (a variable
may not occur in c as well as in T at the left-hand side, and no left-hand-side
variable occurs in any right-hand side).

(c) Pw is the formula obtained by removing each quantifier in P for which the
associated variable has a replacement prescription in T; and subsequently,
performing P'.T on the formula P' obtained in the previous step.

A unifier has to be understood as a most general unifier in the sense of [121. We
have generalized the unification algorithm slightly to allow also the matching of
formulas. For example, A (,4(x), B(b, x)) and A (A(a), B(y, z)) will have the unifier
(xta,ycb,zca).

INM(ST, SK, VAR) :=
if ST and SK are unifiable, with respect to the free variables of ST and SK as given by VAR,

with unifier u
then (u)
else

if SK = (x)Form(x)
then INS2(ST, Form(x) VAR U (x))
else

if ST = (E x)Form(x)
then INS2(Form(x), SK, VAR U (x))
else

ifSK=V(R,...,K,)
then [Z := INSORK(ni1, ST, (K,, . . . , K,));

if Z = nil then NO else Z]
(Where INSORK is a recursive function defined as
INSORK(a, STST, (KKj, . . . , KK,), VAR) :=

Subproblem Finder and Instance Checker 641

if j = n + 1, thus all Ki have been treated already
then u
else [7 := INS2(STST, KKj, VAR);

if T = NO then nil
else U 2%

where Z, = INSORK(v + 0, STST*v, (KKj+l. u, . . . , KK,.v))
for v in T])

else
ifST=/\(T,,...,T,,)

then [Z := INSANDT(nil, (TI, . . . , T,,), SK);
(The function INSANDT works like INSORK in the former case.}
if Z = nil then NO else Z]

else
ifSK=A(K,,...,K,,)

then [W := nil;
for each Ki do

(Z := INS2(ST, Ki, VAR);
if Z unequal NO then W := W U Z);

if W = nil then NO else w]
else

if ST = V(T,, . . . , T,,)
then [W := nil;

for each Ti do
(Z := INS2(T, SK, VAR);
if Z unequal NO then W := W U Z);

if W = nil then NO else w]
else NO.

To prove the soundness of INSTANCE, we first have to prove an already
announced property of INS2.

LEMMA 2. If u is a substitution in INS2(ST, SK, VAR), then k SK * u + ST * IJ.

PROOF. We do case reasoning and induction on the length of the formulas.

Case 1. If SK and ST are unifiable with substitution u then SK * u = ST * u
and, thus, obviously k SK * u + ST * u.

Case 2. Let u be a substitution produced by INS2(ST, Form(x), VAR U (x)).
Thus we have

(1) I-Form(x)*u--,ST*u.

If x occurs at the left side of a component in u, then Form(x) * u = (x)Form(x) * u
and we are done. If x does not occur then we apply generalization on (1).

Case 3. This case with ST = (E x)Form(x) runs parallel to the former case.

Case 4. Assume that u is in INSORK(ni1, ST, (KI, . . . , K,,)). We have to show
kV(Kl,.. .,K,,)*u+ST*a.

We proceed by induction on the INSORK calls. Thus, assume that Kl, . . . , Kj-1
have been dealt with already and that u has been obtained thus far with STST =
ST:u,KKi=Ki*uand

(1) 1 v WI,. . . , Kj-1) * u + ST * U.

Let T be in INS2(STST, KK, VAR); thus we have

(2) I- KKj*T+STST*T,

642

which corresponds with

(3) kKj*c*T+ST*g*T.

Since we infer

(4) ~QJG,.. .,&r)*c*r+ST*u*T

DENNISDECHAMPEAUX

from (l), we can combine (3) and (4) to finish the induction step. The base case is
obvious since we have l- FALSE + ST.

Case 5. This case with ST = A (Ti , . . . , T,,) runs parallel again to the former
case.

Case 6. Let u be in INS2(ST, A (k, . . . , K,), VAR); thus there is a Ki with u

in INS2(ST, Ki, VAR). So we have

kKj*u+STxu.

Since obviously

kA(K,,.. e 3 Kn)*U+Ki*U,

we are done.

Case 7. This case with ST = V (T, , . . . , T,) runs parallel again to Case 6.

We have dealt with all cases of the INS2 function, thus we have confirmed the
induction step. The base of the induction was dealt with in Case 1. Cl

LEMMA 3. If u is a substitution in INS2(ST, SK, VAR) then

k (Vk)SK+ (E Vt)ST,

where Vt and Vk are, respectively, the free variables of ST and SK that belong to
VAR.

PROOF. According to Lemma 2 we have

(1) l-SK*u+ST*u.

As a consequence of .

(2) k (Vk)SK + SK * u,

(3) 1 ST * u + (E Vt)ST,

(4) I(((Vk)SK + SK * u) +
[(ST * u + (E Vt)ST) +
((SK : u + ST * a) + ((Vk)SK + (E Vt)ST))]j,

we conclude by deleting left-hand sides of implications in (4), using modus ponens
with (i)-(3) as premises:

(Vk)ST -+ (E Vt)ST. cl

Combining Lemmas 1-3, we obtain

THEOREM 1. If T and K are closed, compressed miniscope, predicate calculus
formulas and INSTANCE(T, K) holds, then F K +- T, thus INSTANCE is sound.

PROOF. According to Lemma 1, we have

k S,(K) + S,(T) implies k K +- T.

Subproblem Finder and Instance Checker 643

Since (Vk)S,(K) = S,(K) and (E Vt)S2(T) = S*(T), because S,(K) as well as &(7’)
are closed formulas, application of Lemmas 2 and 3 gives the required result. 0

Since implication is transitive,

and INSTANCE is a stronger version of implication, one may wonder whether
INSTANCE is transitive. Do INSTANCE(P, Q) and INSTANCE(Q, R) imply
INSTANCE@‘, R)?

THEOREM 2. Zf P, Q, and R are in compressed miniscope, then INSTANCE
(P, Q) and INSTANCE(Q, R) imply INSTANCE(P, R).

PROOF. We introduce the following abbreviations: SP := f&(P), SR := &(R),
Q, := S,(Q), and Q2 := S*(Q). There are substitutions pI and p2 with pl in INS2(SP,
Q,, nil) and ~2 in INS2(Q2, SR, nil). We have to show that there is a substitution
~1 in INS2(SP, SR, nil). We induct on the number of quantifiers and connectives
in P, Q, and R.

The base case is trivial since pl and p2 must be empty. Therefore, we have SP =
&;it = SR, which ascertains that the empty substitution belongs to INS2(SP,

The induction step requires 12 different cases concerning an additional quantifier
(() or (E)) or connective (A or V) in P, Q, or R, respectively. We only consider
an additional () quantifier and an additional V connective in Q, since the other
cases are similar.

Case () in Q. Let the variable bound by the additional quantifier be x. When
x is not bound in pl, we let ~1 be the substitution obtained by induction, yielded
by the triple P, QQ, R where QQ := Q”(x t c) and c is the anti-Skolem constant
generated by the production of Q2. Otherwise, when x is bound in pl to, say, CZ,
we take for p the substitution obtained by induction, yielded by the triple P, QQ,
R where QQ := p(x t ~2).

Case V in Q. There is a Q in V(Q,, . . . , Q,,) which produces the p2 substitution.
There will certainly be a substitution pt produced by INS2(P, Q;, nil). So, we take
for p the substitution inducted by the triple P, Qi, R. 0

Remark 1. The transitivity of INSTANCE has relevance in practice. Suppose
we have the conjunction A A B A C. Assume we have INSTANCE(A, B). Thus,
we can replace A A B A C with the equivalent formula B A C. Suppose we have
also INSTANCE(C, A). Transitivity allows us to “forget” A, because we are certain
to have INSTANCE(C, B), allowing us to reduce the conjunction to B.

Remark 2. The definition of CMS given in the beginning of this section
mentions INSTANCE. As long as a similar INSTANCE procedure satisfies our
theorems, we can accept another delineation of a subset of the PC claiming the
name CMS. A uninteresting example would be INSTANCE(T, K) iff T = K. Since
all results of the next section refer only to Theorem 1 of this section, they generalize
immediately to other, stronger versions of INSTANCE.

4. INSURER

INSURER is the theorem prover preprocessor that expects for its input a problem,
specified as a closed predicate calculus formula, and that tries to rewrite it in an
equivalent formula with the leading connective “and” (while restraining itself from

644 DENNIS DE CHAMPEAUX

rewriting, for instance, P into P A P). If the output is a conjunction, then the
subformulas of the conjunction can be seen as subproblems. When all of them can
be solved, the original problem has been dealt with. The main issue of this
section is whether INSURER gives a maximal decomposition into independent
subproblems.

As we have already stated in [2], the set of rewrite rules that make up INSURER
is, coincidentally, a subset of the rewrite rules that make up to PC-CNF translator.
Despite their similarity, their behavior is substantially different. Whereas a
PC-CNF translator produces CNF, the procedure INSURER produces equivalent,
closed PC formulas. (In addition, note that a PC-CNF translator is usually applied
to the negation of a conjecture, whereas INSURER is applied to the conjecture
itself.) Since we shall argue that this PC-CNF translator remedies deficiencies of
the one described in [3], [1 I], and [lo], we first describe the PC-CNF translator
and discuss its properties.

The translator consists of the following sequence:

(1) eliminate “if, . . . , then” and “if and only if”;
(2) move “not” inward;
(3) push quantifiers to the right;
(4) eliminate existential quantifiers by Skolem functions and delete universal

quantifiers; and
(5) distribute “and” over “or”.

Steps 1, 2, and 4 are standard. Steps 3 and 5 invoke INSTANCE. We describe
each step briefly.

(1) Let t, be the procedure that eliminates implications and equivalences:

t, (formula) :=
if formula = A + B then V (-t,(A), t,(B)) else
if formula = A +P B then A (V(-t,(~), t,(B)), V(~,(A), -t,(B))) else
if formula is atomic then formula else
the result of descending recursively in formula.

Remark. In our implementation, we always introduce abbreviations for
(sub)formulas. This allows us to associate properties with (sub)formulas and, in
particular, it will prevent subsequent reprocessing of the duplicated arguments of
an equivalence.

(2) Let t2 be the procedure that moves the negation symbol inward:

t2 (formula) :=
if formula = --A then t&I) else
if formula = -(x),4 then (E x)t2(-A) else
if formula = -(E x&4 then (x)f2(-,4) else
if formula = -(V(A,, . . . , A,)) then A&(-A~), . . . , t2(-&)) else
if formula = -(&A,, . . . , A,)) then V(Z~(-A,), . . . , t2(-4,)) else
if formula is atomic or -(atomic) then formula else
the result of descending recursively in formula.

Remark. In our implementation of this step, we always associate each
(sub)formula with its negation, while the negated formula is associated with the
original formula. This only doubles the number of formulas we must deal with,
but saves time in subsequent processing, as we point out in the following.

Subproblem Finder and Instance Checker

(3) Let t3 be the procedure that moves quantifiers to the right:

645

t3 (formula) :=
{let XX, YY be metavariables standing for A or V)

if formula = X&4,, . . . , A,) then T3AO(XX(WJ, . . . , hG4J)),
where the function T3AO is explained below;

else
{let (Q x) be (x) or (E x)]

if formula = (Q x),4 then
let B = t,(A);
ifB=XX(B,,...,&)then

if [(Q x) = (x) and XX = A] or [(Q x) = (E x) and XX = A] then
t,WtC,, . . . , CK, (Q-W,, . . . , (QxP/)),
where Ci and Di are the formulas B, that do not and do contain the variable x,
respectively;

else
if there is a B, that does not contain x then

t3wftc,, . . . , CK, (Q x)xx(D,, . . . , D/h
where Ci and Di are the formulas Bi that do not and do contain the variable x,
respectively;

else
if there is a Bi with Bi = YY(&, , . . . , Bim) and

[(Q x) = (x) and YY = A] or [(Q x) = (E x) and YY = V] then
tx(YY((Q x)XX(Bily CI 9 . . .T CK), . * * 3 (Q x)~x(&m, Cl 3 * * * 2 CK)))~
where Ci = Bj unless j = i

else (Q x)XX(B, , . . . , B,)
else
if B = (Q y)C then (Q y)t3((Q x)C) else (Q x)B

else formula.

We have to explain the support function T3AO. This function deals with
conjunctions/disjunctions where the subformulas have been treated already by t3.
T3AO attempts to remove subformulas from the conjunction/disjunction, and it
also tries to collapse its argument completely. It invokes INSTANCE for these
attempts. More precisely, it attempts to “flatten” its argument; to remove sub-
formulas; and to collapse the remaining arguments.

To facilitate the description of these actions inside T3A0, we assume that the
input argument is a conjunction. The flattening operation works as follows:

flatten(formula) :=
if formula = &A,, . . . , TRUE,

flatten(A(A,, . . . , A,))
. . . , A,) then

else
if formula = /\(A,, . . . , FALSE, . . . , A,) then

FALSE
else
if formula = &I,, . . . , A(B,, . . . , B,,,), . . . , A,) then

flatten(A(A,, . . . , Bi, . . . , B,,,, . . . , A,))
else formula.
remove-argument(A(A,., . . . , A,)) :=
if i #j and INSTANCE(Ai, A,) for some i and j then

remove-argument(A(BI, . .
else AQI,, . . . , A,).

. , B,,,)) where (Bk] = (Ak I k # i)

collapse-argument(A(A,, . . . , A,)) :=
if INSTANCE(t,(-A,), A,) for some i andj then

FALSE
else A(A, , . . . , A,).

646 DENNIS DE CHAMPEAUX

Remark. The tests applied in the subfunction collapse-argument benefit sub-
stantially from the associations between a formula and its negation that we
introduced in phase two. In our implementation, we store the outcome of an
INSTANCE test at its first argument to prevent redoing these calculations when
the arguments are reencountered (say, because of a distribution of A over V).

(4) Let t4 be the procedure that eliminates existential quantifiers; we execute
t4(output of step 3, nil), where the second argument, here nil, stands for the set of
universally quantified free variables in the first argument.

k(formula, (x,, . . . , x,1) :=
if formula = (E x),4 then

t4(4x + j-(x,, . . . , Al)), (Xl, . . . , xn)), where f is a fresh Skolem function and each
occurrence of x in A is replaced byf(x, , . . . , x,,),

else
if formula = (x)A then

f&4 ix, XI, . . . , &I)
else the result of applying t4 recursively on subformulas.

(5) Let t5 be the function that distributes A over V

ts(formula) :=
if formula = l\(A,, . . . , A,) then

TWk(A), . . . , f564n)N

else
if formula = V(A,, . . . , A,) then

T500ks(A,, . . . , At)))
else formula.

The support function T5A works like T3AO; see above. The support function
T50 first does the activity like T3AO and subsequently checks whether a sub-
formula is a conjunction. If so, the function t5 is applied again to the result of
distributing A over V.

The main difference between this PC-CNF translator and those described in [3],
[lo], and [1 I] is the incorporation of INSTANCE. The translator in [3] is based
on first producing prenex normal form, which is done with rules 1 and 2, fol-
lowed by pushing quantifiers to the IejL Consequently, Skolem functions may be
introduced with an unnecessary number of arguments, for example, (x){A(x) V
(E y)B(y)J will be transformed into (x)(E y&4(x) V B(y)) leading to the CNF A(x)
V B(f(x)). Instead, it can be transformed into (x)A(x) V (E y)B(y), leading to the
simpler form: A(x) V B(g). The translator in [lo] lacks the distribution of A over
V, or vice versa, in the scope of a quantifier and its preparatory “flatten” operation,
while the translator in [1 I] lacks, in addition, the appropriate distribution of
quantifiers over connectives. Consequently, these translators may be forced to
generate Skolem functions with too many arguments, and/or to produce too many
clauses and/or too many literals.

In [lo, Theorem 1.5.11, it is shown that the translator preserves unsatisliability.
Combining this result with application of the soundness theorem in Section 3 on
the rules containing INSTANCE-related rewriting leads also to preservation of
unsatisfiability by the translator detailed here.

We define INSURER as the subset of the PC-CNF translator rules that is
obtained by omitting rule 4 concerning the elimination of existential and universal
quantifiers. INSURER produces closed PC formulas, and, since all transformations
concern equivalences, we have

LEMMA 1. If Q := INSURER(P) then F P - Q.

Subproblem Finder and Instance Checker 647

While the input format of INSURER is the unrestricted PC, the next observation
concerns its output format.

LEMMA 2. INSURER maps PC formulas into compressed miniscope.

PROOF. The miniscope property is assured since INSURER checks recursively
that terms of disjunctions/conjunctions in the matrix of a quantified formula
contain the variable of the quantifier.

CMS is partially defined in an operational way by reference to INSTANCE
(which eliminates redundancies, as recognized by INSTANCE, in conjunctions
and disjunctions). Since INSTANCE is incorporated at the proper places in
INSURER, we are assured that the compressed feature is satisfied as well. Cl

INSURER turns out to be a special-case theorem prover. It can recognize at
least ground tautologies.

LEMMA 3. IfQ is a valid PC formula without quantifiers, then INSURER(Q)
= TRUE.

PROOF. Since the output of INSURER is in miniscope, INSURER(Q) is TRUE,
or FALSE, or of the form (literal-atom), V (literal-atom)*, or a conjunction with
each conjunct being a (literal-atom) or V (literal-atom)*.

The case FALSE is prohibited by Lemma 1. The case (literal-atom) con-
tradicts the validity assumption because the value “false” may be assigned to
(literal-atom).

Suppose the output is of the form V(literal-atom)*, and thus like V(O, , . . . ,
Ok). If all Oi are positive (or all are preceded by a negation sign), then we have a
contradiction since we can assign all 0; the value “false” (“true”). Thus, we can
rewrite the disjunction as follows: (V(P), . . . , P,)) V (V(-N,, . . . , -N&j. No Pi
can be equal to a Nj, since that would have been recognized in step 5 of INSURER
by INSTANCE. Again, we get a contradiction with validity by assigning all Pi the
value false and all Nj the value “true”. Consequently, V (literal-atom)* is ruled
out.

Applying the former cases on every conjunct in a conjunction eliminates this
case as well. Thus INSURER(Q) can only be TRUE. Cl

A generalization to the monadic predicate calculus turns out not to hold. A
counterexample is

WQW * KY)(Q(Y) V P(Y)) A (z)lQ(z> V -JWJl.
This is valid and will be translated into

WQ(x) V W-Q(Y) V P(v)1 V W-Q(z) V -P(z)L

instead of TRUE.
INSURER is a recognizer of independent subproblems, since INSURER is

“strongly motivated” to rewrite its input into an equivalent (Lemma 1) formula
which is a conjunction. In case the output is a conjunction, each of the two
arguments is independent of each other with respect to the implicative testing of
INSTANCE. We described INSURER as being strongly motivated since it is not
possible to prove that INSURER gives a maximal conjunctive decomposition.
Even an atomic formula P can be equivalently rewritten into the conjunction
(P A Q) V (P V -Q) for an arbitrary Q. This conjunction, however, is an example

648

of case reasoning because it can be rewritten as

(Q-P) A <-Q+f'>,

DENNISDECHAMPEAUX

embodying the maxim: In order to prove P it is sufficient that Q as well as its
negation implies P.

We are going to show that if a nonconjunctive output (or output component) Q
of INSURER can be rewritten into an equivalent conjunction A Ri, then this
conjunction AR/ embodies case reasoning on Q; that is, ARi is a disguised version
of A(Q V RI) with AR; equivalent to false. Since one cannot expect that INSURER
takes the initiative to do case reasoning, we conclude that INSURER produces
maximal decompositions. First, we deal with supporting lemmas. The next lemma
deals with the quantifier-free case and assumes a particular format for the Ri’s.

LEMMA 4. Assume

-Q and R to be quantifer-fiiee CMS formulas;
-Q is not a conjunction, Q = V(Q,, . . . , Q,) (possibly with q = I), and is

falsijiable;
-R is a conjunction and thus R = ARi, with Ri = V(Ril, . . . , Rir) (possibly

r= 1);
-k Q c-* A(Q v R;).

Let RI be defined as

R f := if Ri, = -QS for some p and s then TRUE else V(R,$), with R,$:= if RU = Qs
for some s then FALSE else Rij.

Then we have

1 Q t, A(Q V RI) and
~-AR;.

PROOF. The construction of the RI allows us to conclude for each i that

kQVRit,QAR/.

Therefore, we immediately have l- Q t, A(Q V RI).
Assume that -AR; is falsitiable. Thus AR; is satisfiable. Therefore, there is an

assignment that makes VAL(I\RI) = true. Since, owing to its construction, (Rl]
does not share a literal with Q, we can extend this assignment without a constraint
to cover Q as well. An extension that makes VAL(Q) = false produces a contradic-
tion with 1 Q w A(Q V RI). Cl

The next lemma deals with the occurrence(s) of quantifiers. It shows that
a conjunction ARip equivalent to Q, is a “mystified” version of a conjunction
A(Q V RI), which holds that A RI is equivalent to false. We reduce the situation
to the quantifier-free case-ultimately allowing the application of Lemma 4-by
stripping away a quantifier at the time. We introduce construction rules that, using
a pair (Q, ARi),, produce another related pair, (Q’, Rl),+,, which contains one
quantifier less.

LEMMAS. If

(1) Q is a falsijiable formula in CMS and not a conjunction,
(2) R is in CMS and a conjunction and thus R = ARi with each Ri not a conjunction,

and

(3) 1 Qt* A&,

Subproblem Finder and Instance Checker 649

then ARi is directly or indirectly an example of case reasoning on Q; that is, ARi
is obtained from Q by (possibly repeatedly) replacing q’s in Q by formulas of the
firm ((4 v PI A (4 v -PH.

PROOF. FROM k Q t, ARi it is easy to see that

(1) t Q w A(Q V &I*

We have

Q= Q1 V .-a A Q4 (possibly q = 1),
Ri 7 Ril V * * * V Ri, (possibly r = I).

We define Ri.vo with

Rixr, := if there is a QY with INSTANCE(Q,, R,) and INSTANCE(Rix, Q,),
then FALSE else Rix.

This allows US to define Rio as Rio := V(Rixo) while deleting the Rixo’S equal FALSE.
We still have

(2) I- Q ti A(Q V Rio).

We have two possibilities:

(i) k *ARio, thus, we are dealing with an immediate example of case reasoning,

or

(ii) not 1 -AREA.

We proceed with case (ii). From (2) and by defining Q. := Q, we get

(3) I- Qof, A(Qo V Rio),

and from (3)

(4) I- ARio * Qo-

By Lemma 4, we can conclude that (3) and (4) should contain at least one
quantifier.

We construct a terminating sequence of {Qn) and (Rin) fulfilling (I), ultimately
leading to case (i), by stripping away quantifiers. Assume that (Q,,) and (Ri,} have
already been constructed.

Construction Rule 1. If there is an Rjn such that Rjn = (x)Rjln V Rjzn V - - - V
Rjrn, and we have a derivation of Qn in which the full power of the universal
quantifier is not used (i.e., the derivation tree for Q can be modified such that all
occurrences of Rjn on leaf positions can be replaced by instantiations for x in Rjn),
we define

Q Qm n+l :=
Rio+, I= Ri, for i # j,
&+I Z= A(Rjln(uk) V Rjzn V *a * V Rjrn)

where (ukJ is the finite set of required instances for (x)Rji,(X) to derive Qn. So we
have

A&n-Qn

Al. ’ WI+1 Q n+l

650 DENNIS DE CHAMPEAUX

It is easy to see that we still have

I- Qn+, * A(Qn+, V R/n+,).

An example of the applicability of Construction Rule 1 is

Q@, b) c* [IQ@, @ V Q@, 41 A IQ@, b) V (x)(-Qk 4 V Qk &))I.
RIO = Q<u, 4; R20 = (x)(-Q@, x) V Q(x, b));

the finite set of necessary instances is here (a). Thus in the next round we have

Q<G b) t* HQ<u> b) V Q(G 41 A (Q@> b) V -Q<u, 4 V Q@, NJI,
which leads to the base case.

Construction Rule 2. If Qn is of the form (x)Q,,, V Q2,, V . . . V Qq,,, then

weaken Q by instantiating x with a new constant c and thus define

Q n+l := Q,,(c) V Qzn V - - - V Qq,,,

and

Rin+l Z= Rin.

So we have

%+I -Qn+,
By induction on i, it can be shown that we still have

t- Qn+, * A(Qn+l V &+l).

An example of the applicability of Construction Rule 2 is

(x)Q(x, 4 t* [WQ(x, 4 V WW(Y, z) V Q(Y, 41 A
Kx)Qk 4 V (W)[-W, z) V Q(Y, 411,

replacing (x)Q(x, a) by Q(c, a). Thus in the next round we have

Qk 4 * HQ<c, 4 V bW[W, 4 V Q(Y, 41) A
(Qk 4 V (JW[-P(Y, z) V Q(Y, z)lIl.

Construction Rule 3. If Qn is of the form (E x)Q,,(x) V Q2,, V - - - V a,, and
we have a derivation of (4) that allows us to strengthen Q,, by instantiating x with
a constant c, then define

R,+, Z= Rin

and

Q ,,+I := Q,,,(c) V Q2n V - - - V Qm
Q,,+, may not be in CMS any more, since Qln(c) can be a conjunction. If so, we

obtain as many examples of (1) as there are terms in the conjunction by distributing

Subproblem Finder and Instance Checker 651

“and” over “or.” So we have

Whether we have to distribute A over V or not, we still have (for each conjunct)

k QM c-) A(Qn+l V &+l)-

An example of the applicability of Construction Rule 3 is

(E x)Q(a, xl - W x)Q(a, 4 V MP(Y) V Q(a, ~4)) A
KE x)Q(a, 4 V (E z)-WJI.

We obtain

QO = (E x)Qh 4,

and
RIO = (W(Y) V Q(a, ~41,

Rx, = (E z)-P(z).

By application of Construction Rule 4 (below), we get, for instance, Qr = Qo,
R,, = R,o and RZ, = -P(c). Since A(R,,, R2,) not only allows us to derive Qr but
also Q(a, c), application of Construction Rule 3 leads to Qz = Q(a, c).

Construction Rule 4. If there is a Rjn such that Rjn = (E x)Rj,n(X) V Rjzn V - - -
V Rti,,, then strengthen Rjn by instantiating x with a new constant c and thus define

Q Qm n+l :=

Rin+l := Rin for i # j,
Rjn+ 1 Z= Rj,n(c) V Rjzn V * * * V Rjln.

AS with Construction Rule 3, Rjn+, may not be in CMS when Rjln(C) is a
conjunction. By distributing “and” over “or” we get more (Ri,+,]‘S than (Rin]‘S. So
we have

Also in this last case, we still have (for each conjunct)

I- Qn+, * A(Qn+l V IL+,)*
For an example of applicability of Construction Rule 4, see the example in
Construction Rule 3 above.

When a construction rule is applicable, we recheck whether the condition of case
(i) holds, which leads to an example of case reasoning.

It remains to show that at least one construction rule applies. We immediately
can rule out the cases in which Q,, contain a universal quantifier or ARi, an
existential quantifier, since applicability of Construction Rule 2 or 4, respectively,
depends only on these syntactic features. Thus, we are left with Qn containing an

652 DENNIS DE CHAMPEAUX

existential quantifier and/or AR, containing a universal quantifier. Assume that
Q contains an existential quantifier. Thus we have

A derivation tree for (5) can be modified into a derivation tree for

where c is fresh constant, by propagating modifications from the root to the leaves,
unless a leaf of the tree is of the form (E y)Rjn(y). This, however, we have already
ruled out since it would lead to applicability of Rule 4.

The case in which AR, contains a universal quantifier leads to a similar
contradiction.

This process halts because we start with a finite number of quantifiers, and we
strip off a quantifier each time a construction rule applies.

Thus we have shown that the original situation was a “disguised” form of case
reasoning. Cl

Finally, we rephrase Lemma 5 as

THEOREM. Let X be the output of INSURER when the output is not a conjunction
or else an arbitrary member of the conjunction. INSURER produces a maximal
conjunctive decomposition in the sense that there is no equivalent conjunctive
decomposition of X, when we disregard case reasoning on X (see Lemma 5 above
for the notion of case reasoning).

PROOF. Apply Lemma 5. 0

5. Interplay between INSURER and INSTANCE
INSURER, INSTANCE, a connection graph resolution-based contradiction recog-
nizer, a PC-CNF translator, and a definition opener were imbedded in a “fixed”
regime. Input for the prover consists of axioms, supporting theorems (proof
sequence is not taken into account), definitions (again, without sequence), and the
conjecture. For the next description, we should remember that activation of the
connection graph component should be postponed at all costs.

Roughly, this supervisor triggers the following activities:

Step 1. If the conjecture in an INSTANCE of an axiom, a theorem, or
an already proven theorem (see Step 2)

then return with success.
Step 2. If the conjecture, using INSURER, decomposes into the

subproblems C, , . . . , C,,
then for each C, go (recursively) to Step 1

if the value returned for treating Ci is successful
then add C, to the collection of already proven theorems
else quit with failure;

return with success.

Step 3. If the conjecture contains a predicate defined in one ofthe definitions (nonrecursive)
then replace in the conjecture each literal in which the predicate occurs by the

instantiated body of the definition and go to Step 1.
Step 4. Translate the axioms, supporting theorems, and the negation of the conjecture into

conjunctive normal form, invoke the resolution-based contradiction recognizer,
and return its value (a resource parameter ensures termination).

Subproblem Finder and Instance Checker

(1) (X)(Y)WX(YZ) = (XY)Z
(2) (x)xe = x
(3) (x)ex = x
(4) (x)x1(x) = e
(5) (x)1(x)x = e
(6) (H)(SUBGR(H) c,

1 A (E xvf(x)
(x)(Y)lwx) A H(Y) + fmY)l
@M4x) ---f H(l(x))ll)

(7) (H I)(H2) (SETEQ(H I, H2) o
bw 1 (x) - HW)))

(8) k)WW) (COSEVg, X W -
[/\ SUBGR(H)

cww -
(E YW(Y) A x = Yb4ll)

(9) (g)W)W) WSETk X W +
W(g) - SETEQW, WI)

653

FIG. I. Axioms (l)-(5) (not minimal), defini-
tions (6)-(8), and a theorem (9) from group
theory.

This is a simple-minded supervisor and made only to demonstrate the effective-
ness of INSTANCE and INSURER. We have used a more sophisticated supervisor,
which can cope with recursive definitions, in the context of program verification.
However, much remains to be desired. An attractive alternative would be to
implement the supervisor as a multiprocess scheduler. Then, the overall structure
of the cooperating specialists would be more transparent. It would facilitate the
addition of new specialists, and open the way to pseudoparallel processing, which,
but for the lack of available languages like QLISP, INTERLISP, and MAGMA-
LISP, would be possible.

6. Implementation Results
The first example comes from group theory; see Figure 1 for axioms (l)-(5),
definitions (6)-(8), and theorem (9). The axioms (l)-(5) do not constitute a minimal
characterization of a group. A subset of a group is represented by a predicate
variable. The predicate SUBGR, which expresses the property of a subgroup, is
therefore of second order. Equality of subsets is expressed by SETEQ in (7). The
notion of a right coset is defined by (8); COSET(g, X, H) should be read as “X is
the right-coset with respect to the subgroup H and the group element g.” The
predicates SETEQ and COSET are also of second order. Theorem (9) expresses
that the element g belongs to the subgroup H iff H is equal to the g-H-coset.

Direct translation of (l)-(8) and the negation of (9) into conjunctive normal
form yields 39 clauses with all together 109 intervals. INSURER, however, recog-
nizes that (9) can be decomposed into

(10) (g)(H)Wg) V GOI W -COSETk X HI -SETEQ(X H)O
and

(11) k)W)(-H(g) V GW -COSWg, X W SETEQV, HN).

Working on (lo), the definitions of COSET, SETEQ, and SUBGR are, respec-
tively, substituted. The result is negated and, together with (l)-(5), translated into
conjunctive normal form yielding 14 clases with 23 literals. After removing COSET
and SETEQ in (1 I), it turns out that INSURER applies again, splitting up (11)
into two subproblems. Each one ends up with 13 clauses and 20 literals. Although

654

FIG. 2. Formulas used by Green to gen-
erate a sorting algorithm (with an answer
predicate; see [7]). The formulas are
axioms (l)-(5), definition (6), and conjec-
ture (7), respectively.

DENNIS DE CHAMPEAUX

(1) (X)(Y) (SW + Wmerwk Y)))
(2) (X)(Y)(U) W(y) A Samek YN -,

Same(cons(u, x), merge(u, y)))
(3) (x) (Equal(x, nil) + R(x, nil))
(4) (x) (-Equal(x, nil) +

Equal(x, cons(car(x), cdr(x))))
(5) (x)(u)(u) Wwah u) A Same(u, UN -,

Same(x, u))
(6) (X)(Y) VW, Y) - &m-4x, Y) A SW))
(7) (xW Y) (hulk nil) - W, Y))

((-Equal(x, nil) A R(cdr(x), sort(cdr(x))))
+ Rk Y)))

our resolution component is not able to handle these three subproblems, the
chance of finding a solution has increased “infinitely” when compared with the
nondecomposed situation.

INSURER can also handle the sorted predicate calculus that was described in
[I]. The same coset example formulated in sorted predicate calculus, without
decomposition, yields 28 clauses with 61 literals. INSURER also finds here three
subproblems, each having 12 clauses with 16, 14, and 14 literals, respectively,
creating a significant reduction again. However, the connection graph resolution
component, in the meantime extended with paramodulation facilities, still cannot
handle them. (Instead of relying on paramodulation, we consider adding an equality
specialist to the deductive community.)

The next example was taken from [7] and was already worked on as reported in
[l] (see Figure 2). It was originally used in [7] for illustrating automatic program-
ming. A sorting algorithm was generated by adding an “answer-predicate” to the
negated conjecture and submitting all the formulas to the QA3 resolution theorem
prover. Green [7] admits that the axioms are “tuned” for the algorithm generation.
The conjecture contains, for instance, the function “sort,” which is not referred to
by the other axioms. In fact, from the axioms one can prove expression (7) by
replacing “R(cdr(x), sort(cdr (x)))” with “(E z)R(cdr(x), z)“, from which (7) can be
inferred.

The main predicate is Sd, which expresses that its argument, a list, is sorted. The
expression R(x, y) signifies that the list y is a sorted permutation of the list x;
Equal(x, y) signifies that the list x is identical with the list y; the empty list is
indicated by nil. The function “merge” stands for merging a list with a sorted list
such that a sorted list is the result. The function “cons” corresponds to adding an
element to the front of a list. The functions “car” and “cdr,” respectively, produce
the first element and the remainder of a list.

INSURER will decompose the conjecture into two subproblems. When
INSTANCE is not incorporated, eight subproblems will be found, six of which will
be redundant. Subsequently, INSTANCE recognizes that one of the subproblems
is an instance of axiom (3). The remaining subproblem is solved with definition
substitution, as well as without definition substitution (by adding the definition to
the axioms). In both cases a contradiction is found more easily than in the
nondecomposed case (see Table I).

Table I shows the effectiveness of INSURER and INSTANCE. The numbers
between brackets refer to values obtained when the sorted predicate calculus is
used [I]. The g penetrance is defined as #(clauses in proof)/#(input + generated
clauses). The QA3 values were taken from [7].

A later version of our theorem-proving complex incorporates the evaluation of
a conjecture and/or subgoals in models (in order to prune the search tree).

Subproblem Finder and Instance Checker 655

TABLE I

Input + generated
Program and strategy clauses g penetrance

QA3 286 0.09 I
Resolution only 38(25) 0.579(0.680)
+ INSURER and INSTANCE 28(17) 0.785 (0.882)
+ Definition substitution 20(12) 0.800 (0.917)

Predicates defined in a theory are proceduralized automatically after the application
of INSURER to the body of the definition. For example, the notion of transitivity
was encountered in the usual form:

INSURER rewrites the body into

W(J4[-Nx, Y) v @N-W, z) v Nx, m
This is an improvement, indeed, since the procedure that results from replacing

the quantifiers by loops now has a core loop over z that is 33 percent cheaper.
Our final example consists of only one formula:

w xI)(YlvYxI) * ml)1 c-, KE xz)Q(x2) c-) (Y~V’(YZN *

[((E x3)(y3)Q(x2) c-* Qb3N * ((E X4)0X4) * (Y~)Q(Y~N.

P. Andrews posed this problem at the Fourth Workshop on Automated Deduc-
tion, Austin, Texas, February 1979. He added that he was willing to send the first
500 clauses for free. Resolution .theorem provers are drowned as a result of the
many clauses generated by the PC-CNF translator as a consequence of seven
equivalences, which double the length of the formula each time. INSURER, heavily
invoking INSTANCE, resulted in 169 successful instance recognitions, reducing
the formula to TRUE.

7. Comparison with Related Work

The importance of recognizing independent subgoals in theorem proving has been
demonstrated earlier by Ernst in [5]. His theorem prover had a two-level structure:
one for the recognition of subgoals and the second, a conventional theorem prover,
for dealing with nondecomposable subgoals. His first component works toward a
so-called simplified miniscope format. He acknowledges that miniscope is not
produced since, for instance, distribution of A over V in the context of a universal
quantifier is not attempted. Notable is his reluctance to rewrite blindly an impli-
cative formula into a disjunction: “This is the reason that + is not replaced by its
definition in terms of V and - except under special circumstances.” We gather
that to do chaining, he used special procedures that were sensitive to the syntactic
implicative structure of formulas.

Mechanical proofs of the Andrews problem were reported in [8]. Attacking the
problem head on with their resolution machine was impossible, since they report
that straightforward translation into CNF produces 1024 clauses, mostly of length
8. A clever translator, TAMPR, produced only (sic) 86 clauses, and a refutation
was produced upon clause 1052. They illustrate TAMPR as follows:

TAMPR was directed to translate formulae of the form -(P c, Q) to (P V Q) A
(-P V -Q). This transformation avoids generating the two tautologies, (P V -P) and
(Q V -Q), which will generally not be recognized as tautologies when P and Q are
quantified formulas themselves. [8, p. 301

656 DENNIS DE CHAMPEAUX

This quotation shows clearly that their TAMPR program is a special case of our
INSURER/INSTANCE modules. Their brute force resolution prover, which re-
quired only 106 seconds to generate the 1052 clauses, is an unbeatable workhorse.

8. Future Investigations
The results reported above suggest to us that a deductive “architecture” built up
from deductive specialists is promising. Certainly, it is advisable to pursue this road
first, with the restriction that the deductive components are algorithmic and thus
always halting. Examples include: a model evaluator to decide whether a subgoal
is hopeless (since it is not true in a model) [6]; an equality substitution simplifier,
which replaces complex terms by equal but less complex terms; an if-then-else
recognizer, which can split a problem into two subproblems of lesser complexity;
and so forth. At a certain point, this algorithmic restriction should be abandoned.
Then the realm of search is entered again, no longer on the modus ponens level,
but with operators of greater scope: Check whether it is worthwhile to introduce
an abbreviation for a recurring expression; apply key theorem cy in situation @ try
to adapt the proof for a similar result in a less general theory; try to prove a more
general result that can be expressed more concisely (and that is not falsified by any
available model); resort to induction in a specific context; try to reinterpret the
theory under consideration into other available theories; and so forth.

Somehow, we must deal with the phenomenon that at a certain stage in a theory,
some previous result will be applied “automatically” when it can be applied. Thus,
when a theory becomes activated, some theorems will become active in a “compiled
format,” as additional derivation rules. At the same time, we doubt that this
“compilation” is an all-or-nothing matter; a theorem can gradually reach the status
of being applied automatically (while this process can always be backtracked).

Frequently, it has been emphasized that something should be done with a newly
found proof, that it should be the input for some kind of a learning component.
Somehow, nobody has ever designed a procedure that could do something useful
with the many mechanical proofs that have been generated in the last decades. But
even when we refrain from starting a learning process, we still need a description
of the proof (and also of its associated theorem) in order to do analogy reasoning.
We suspect that the lack of a greater variety of deductive operators, which hampers
our proving interesting theorems, is also responsible for the impossibility of making
sense of obtained proofs.

When a larger collection of operators in a theory is available, an obvious step is
to assign them priorities, automatically on the basis of performance or initially by
“Acts of God”-hence, by programmers. Then it will be possible’ to generate
(recursively, thereby introducing another dimension in which search is performed)
skeleton proofs, to be refined in the next level of recursion. In [131 Sacerdoti has
obtained convincing results with this technique in the realm of plan generation.

Yet, there is still a fair chance that the problem of mechanically proving difficult
mathematical conjectures can advantageously be replaced by another problem:
how to generate automatically (with respect to a given collection of definitions,
axioms, lemmas, theorems, models, and similar theories) an interesting conjecture
or concept to be defined. This capability, at least to some extent, might be essential
for generating intermediate stepping stones for a really difficult theorem.

ACKNOWLEDGMENTS. Extensive comments by the reviewers and the critique by
Richard Weyhrauch have contributed substantially to the presentation. Julie Tilton
heroically streamlined my version of English.

Subproblem Finder and Instance Checker 657

REFERENCES

I. DE CHAMPEAUX, D. A theorem prover dating a semantic network. In Proceedings ofAISB/GI
Conference (Hamburg, West Germany). Univ. of Hamburg, Hamburg, 1978, pp. 82-92.

2. DE CHAMPEAUX, D. Sub-problem finder and instance checker, two cooperating preprocessors for
theorem provers. In Proceedings of the 6th International Joint Conference on Artijicial Intelligence
(Tokyo). 1979, pp. 191-196.

3. CHANG, C -L., AND LEE, R. C. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, Orlando, Fla., 1973.

4. ENDERTON, H. B. A Mathematical Introduction to Logic. Academic Press, Orlando, Fla., 1972.
5. ERNST, G. W. The utility of independent subgoals in theorem proving. If: Control 18 (1971),

237-252.
6. GELERNTER, H. Realization of a geometry theorem proving machine. In Proceedings of an

International Conference on Information Processing (Paris), UNESCO House, 1959, pp. 273-282.
Reprinted in Computers and Thought, E. A. Feigenbaum and J. Feldman, Ed. McGraw-Hill,
New York, 1963, pp. 134-152.

7. GREEN, C. The application of theorem-proving to question-answering systems. Stanford Artificial
Intelligence Project Memo AI-96, Stanford Univ., Stanford, Calif., June 1969.

8. HENSCHEN, L., ET AL. Challenge problem 1. SIGART Newsl. 72 (July 1980), 30-3 I.
9. KLING, R. E. A paradigm for reasoning by analogy. Artij Intell. 2 (1971), 147-178.

10. LOVELAND, D. W. Automated Theorem Proving: A Logical Basis. North-Holland, The Nether-
lands, 1978.

1 I. MANNA, Z. Introduction to Mathematical Theory of Computation. McGraw-Hill, New York,
1972.

12. ROBINSON, J. A. A machine-oriented logic based on the resolution principle. J. ACM 12, 1, (Jan.
1965) 23-41.

13. SACERDOTI, E. D. Planning in a Hierarchy of Abstraction Spaces. In Proceedings of the Interna-
tional Joint Conference on Arlificial Intelligence (Stanford). 1973, pp. 412-422.

14. WANG, H. Toward mechanical mathematics. IBM J (Jan 1960), 2-22.

RECEIVED FEBRUARY 1984; REVISED NOVEMBER 1985; ACCEPTED DECEMBER 1985

Journal of the Awxiation for Computing Machinery, Vol. 33, No. 4, October 1986.

